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1 Introduction

At the beginning of this century, a lot of changes as well in the field of
politics, art and sciences have led to a change of paradigms and ways in
which people think and interact with ‘(the/their) world’. That climate of
change lasted the whole century, due to the inertia of old ideas and the re-
quired time people needed to build ‘new images’ (or even, new world views)
that incorporate the new findings. Nonetheless, as soon as old paradigms
get overruled, new ones appear. This is something which also happened af-
ter the ‘invention’ of quantum physics. The modernist deterministic world
guided by Laplace’s prime intelligence had to make place for one in which ap-
pear probabilities that have a mysterious status, as we will explain now. The
probabilities of classical statistical theories [1, 3], e.g., statistical, mechanics,
thermodynamics, classical probability calculus, have never been considered
to be an obscure subject, because they can be explained as being due to a
lack of knowledge about an eventual deterministic underlying reality. So,
these classical probabilities are only a mathematical formalization of the lack
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Academic, Dordecht.
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of knowledge about the system under study. When quantum mechanics was
born as an intrinsic probabilistic theory, the question was raised rapidly of
whether these quantum probabilities [5, 10, 13, 17] can also be explained as
due to a lack of knowledge. The field of research investigating this problem
was referred to as the search for hidden variable theories, the hidden vari-
ables describing this so called deterministic underlying reality. During the
years many theorems (e.g., the famous no-go theorem of J. von Neumann
[4], or its elaborations [6, 7, 8].) have shown that hidden variable theories
for quantum mechanics are impossible, indicating that quantum probabili-
ties are of a fundamentally different nature than classical probabilities and
seemingly not due to a lack of knowledge. Some physicists formulated very
clearly their opinion: quantum mechanical probabilities are ontologically
present in reality itself. These ontological (or objective) probabilities de-
stroyed the classical picture of the world in such a way that the search for
an image of what really happens in the ‘physical world’ had been abandoned,
and still is so in many fields of micro-physics. As such, a large quantity of
the contemporary community of physicists consider ‘real’ physics as some-
thing definitely complementary to anything to be understood as possibly
eligible by ‘realism’. Without going into any debate on this, we will show
that it is indeed possible to find a picture of quantum entities where these
‘strange’ probabilities are explained. In fact, even formally, we only have to
introduce a specific new concept within the theory of physics, that was not
explicitly present before, namely a model of aspects of creation.

More explicitly, when we consider a measurement on a physical entity,
these aspects of creation can be modeled as an interaction of the physical
entity with its measurement environment, in such a way that a measurement
on this entity provokes a change of state of the entity that depends on the
interaction with its measurement context. As it is explicitly shown in [15,
16], there are two aspects that determine structural differences, in the sense
that we obtain quantum-like probability structures, if the measurements
needed to test the properties of the system are such that:

1. The measurements are not just observations but provoke a real change of
the state of the system.

2. There exists a lack of knowledge on what precisely happens during the
measurement process.

The first aspect, the change of state, can be interpreted as an ‘act of creation’
on the entity under study. It is indeed the external device that provokes the
change of state during the interaction with the entity. If there is not such a
change of state, we can consider the measurement as a discovery. The second
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aspect, the presence of the lack of knowledge on the precise act of creation
which results from an interaction with the measurement context, lies at the
origin of the so called indeterministic nature of quantum measurements and
can be formalized as a lack of knowledge on the precise measurement that is
actually performed [15, 16]. We can formalize the foregoing ideas somewhat
more concretely in the following way:

1. With each real measurement e corresponds a collection of deterministic
measurements eλ, called ‘hidden measurements’.

2. When a measurement e is performed on an entity in a state p, then one
of the hidden measurements eλ takes place. The probability finds its origin in
the lack of knowledge about which one of the hidden measurements effectively
takes place.

In [15, 16, 22, 23, 24, 26] it has been shown that we are indeed able to re-
cover the probabilities that appear in quantum theory by considering every
measurement as a collection of so called ‘hidden measurements’ on which
we introduce a lack of knowledge through a so called mathematical weight-
representative for the relative frequency of occurrence of the hidden measure-
ments when the original measurement actually takes place. These ideas have
been further developed on a formal level within an abstract mathematical
setup called the hidden measurement formalism for physical measurements
[15, 16, 22, 23, 24, 26, 27]. For an overview of other applications of the
hidden measurement approach we refer to [18, 19, 20, 21, 24, 25, 28, 29, 30,
31, 32, 33].

In this paper we proceed as follows. First we briefly describe a classi-
cal physical entity, and we explain the meaning of probabilities within the
framework of classical physics. Secondly, we explain in which way quantum
entities and quantum probabilities differ from such classical ones. In the
following section we introduce aspects of creation, and we show how they fit
in our traditional picture. Finally we present a model within macroscopic
physical reality that generates exactly the quantum probabilities, and in
which appear only probabilities that correspond with a lack of knowledge.

2 Probabilities in classical systems

In this section we introduce the notion of probability, and how it occurs
in classical physics. In classical physics we describe classical systems. A
classical system can be conceived as an entity that represents a well-defined
part of reality, and which is separated from its environment. A second
important aspect that characterizes a classical physical entity is that we
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are in principle able to attach definite values true or false to all the physical
quantities necessary and sufficient to give a full representation of our physical
system. We explain this in more detail. As a starting point we consider the
elements of physical reality, introduced by Einstein, Podolsky and Rosen who
said in their 1935-paper [2]: ‘If, without in any way disturbing a system, we
can predict with certainty the value of a physical quantity, then there exists
an element of physical reality corresponding to this physical quantity’. We
now quote Piron [14] to explain what we mean by an actual property1: ‘A
property is actual (or the system possesses an ‘element of reality’) if it is
‘certain’ that the positive result would be obtained if the experimentator
would decide to perform the corresponding experiment’, where it is pre-
supposed that every property that one can attach to a physical system is
testable, i.e., there exists an experiment that verifies it. Since the set of all
possible physical quantities which could describe our entity are completely
characterized by the set of all properties of the entity (actual, or not, which
is called potential [9, 11, 34]), we are for every classical entity able to attach
a value true or false to every property respectively corresponding with the
property being actual or potential2. Of course, in certain situations we might
not know exactly the value of every property of the physical entity (although
they really exist). This means in fact that we have a lack of knowledge on
the properties of the entity. The mathematical tool delivered to deal with
such a situation of a lack of knowledge on a classical entity is a probability
measure [1, 3]. In such a probability representation, if something is true to
our knowledge it requires that we attach a value 1 to it, and if it is false to
our knowledge it requires a value 0. In a lack of knowledge situation, we are
dealing with values lying between (and not equal to) 0 and 1, representative
for a lack of certainty. The most important example where we encounter
such a lack of knowledge situation is the one of a statistical ensemble, i.e., a
collection of entities to which we attach only global parameters (for example
temperature, density, velocity distributions etc . . . ). Consider for example
a quantity of a liquid within a barrel: For every individual molecule in this
liquid, we know that it is located within the barrel, but we don’t know
where exactly in the barrel; as a consequence, the properties related to the
individual molecules are not exactly known; nonetheless, we do know which

1More details on this specific notion of a property can be found in [9, 11, 34].
2At this point, the present reader might get a feeling of conceptual overkill. Therefore,

we already mention that it will be here that the troubles start in the quantum case: false
will not be implied by potential. As such, this more evolved conceptual picture will enable
us to point at the differences between the classical and quantum system in a scheme that
hosts both of them [9, 11].
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ones are very probable and which aren’t.

3 Probabilities in quantum systems

For more than sixty years now, scientists have been trying to really under-
stand quantum mechanics. This long period is at least partly due to the
fact that we are very attached to the classical picture of nature. According
to Einstein and many others — who believed in what we can call the clas-
sical picture of nature — the quantum description which should represent
an entity is incomplete. This has been a point of discussion for many years,
and we have now come to the conclusion that we believe that it is indeed
possible to give a complete realistic description of a quantum entity. But
what was the cause for this so called incompleteness? The fact is that when
the formalism of quantum mechanics had been constructed around 1927 to
describe microscopic systems, the only mathematical expression to describe
an entity was an expression about possibilities or tendencies. In most cases
where we use the standard quantum formalism, we can’t give definite values
to all physical quantities which are necessary and sufficient to give a full
representation of our physical system. The probability assignments are the
most the theory can say about a quantum system we want to observe or to
measure. In fact, one can prove that for every possible preparation we could
make when we want to check if an entity has a well defined property, there
are always other properties about which we cannot be certain. Referring to
the previous section, this means that not all potential properties are false.
When we perform an experiment that tests them, both answers might oc-
cur, namely false and true. In fact, only very few properties that are not
actual will be false. When we use the standard quantum formalism, one
has to accept that for these properties that are not true and not false, there
exist probabilities that do not describe just a lack of knowledge about the
exact situation of our entity, but that are a priori linked with the quantum
world. That’s why one also calls them objective probabilities, contrary to
the classical probabilities that refer to an incomplete knowledge of a given
situation. These classical probabilities, which are the same for every human
being who wants to observe an entity, correspond in fact to a lack of knowl-
edge of the ‘state’ of the entity.3 Until now, one has not been able to give

3We consider the quantum state to give us an as complete as possible representation
of the elements of reality of the entity under consideration. With the words of C. Piron
[14]:‘The state is nothing else than the collection of all actual properties of the given
system.’
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a real content to this picture of objective (ontological) probabilities because
they imply that the existence of an entity can be asserted only with a certain
level of probability. In this article we want to explain another kind of view
which doesn’t need objective probabilities. This view, which we have called
the hidden measurement approach, assumes that quantum probabilities are
caused by a lack of knowledge such as we are used to from the classical
case. Here, quantum probabilities aren’t objective, but the kind of lack of
knowledge differs from the one in classical physics in the sense that a lack
of knowledge on the state of the system gives rise to a classical probabil-
ity model, and a lack of knowledge concerning the measuring process itself
introduces a non-classical model. The presence of the quantum probability
is due to the fact that before the measurement process starts, it is not de-
termined which of the hidden measurement processes shall take place. To
explain what we really mean here, we shall first have to take a closer look
at the aspects of creation which are inherent to measurements that change
the state.

4 Aspects of creation

Within the hidden measurement approach of quantum mechanics we are
able to explain the appearances of quantum-like probabilities. Measuring
or observing a physical reality involves to some extent in the quantum case,
also the creation of the reality observed. What we mean is that some of the
elements of physical reality are being created in the course of measurement.
The act of creation that sometimes takes place during a measurement is
something we are familiar with from our ordinary macroscopic world. The
fact that it only now attracts our attention is that in the quantum case,
measurements that in ordinary reality are just observations also seem to
contain a creative element in the quantum case. We will give an example,
which has already been put forward in [20], and which will explain the
‘creation-discovery’-view a bit more. Consider a survey to determine the
opinion on nuclear energy of an arbitrary selected group persons. A few
interviewers have to find out whether one is ‘for’ or ‘against’ the use of
nuclear energy. The aim is to obtain the true opinion of the members of the
survey, therefore the interviewers have been provided with full information
about the problem. Before an interviewer asks the question to find out if
one is ‘for’ or ‘against’ nuclear energy, a lot of the members of our survey
group will already have a strict opinion (for or against) on the matter, while
other members haven’t thought the subject over in advance and so haven’t

6



   

made their mind up yet. By asking the question the interviewer will, from
those members who had a strict opinion in advance, ‘discover’ if they are for
or against nuclear energy. The ones who didn’t have an opinion in advance,
so the ones who are in doubt about the subject when the question is being
asked, will receive enough information so that also they can give a ‘for or
against’ answer. We see here that by this experiment persons are pulled
out a ‘doubtful’-state into a ‘for or against’-state. This change of state
is caused by the creation-aspect that happens during the measurement or
survey. How the change of state will evolve in the ‘doubtful-person’-case,
depends for a large part on the persuasive force of the interviewer and on
the information he offers. In other words : we say that the change of state
depends in this ‘doubtful-person’-case on the influence of the measurement
context. When we are only dealing with a discovery, there’s almost no
influence of the measurement context. Let’s now look at the probabilities.
When an interviewer meets a member of the survey group, he does not
know his/her opinion and without explicitly asking the question, he can
only make a probabilistic prediction. We make the following assumption on
the probabilities characteristic of the interaction with the interviewer and
the doubtful person: an interviewer meeting such a member of the survey
has a 40 % chance of finding a person who will be for nuclear energy and a
60 % chance of finding one against (here, we attribute probabilities to the
change of state of persons). Suppose that after we have asked the question,
of all our 1000 members we will find 400 for and 600 against. Possible initial
distributions of the members of the survey which yield this result could be:
(i) in advance, 400 are for and 600 are against, (ii) in advance, all 1000
have no definite opinion, (iii) n are for (we choose n between 0 and 400),
3
2n are against, and 1000-5

2n have no opinion. We want to stress the fact
that the result of the survey depends both on the initial distribution of the
members of the survey and on the assumption we made on the interaction
of the interviewer with a doubtful person. We will now analyse this in
more detail. Although all above examples yield the same result, this result
emerged from situations with a different nature. In (i) there was no act of
creation by the interviewer since all members of the survey had a definite
answer in advance. Thus this situation corresponds to a classical situation
(compare to ‘all properties are true or false’ in section 2). In all the other
situations the result is partially due to our probabilistic assumption of the
interviewer creating an answer ‘for or against’ during his interaction with a
member of the survey group. The probabilities attributed to the change of
state of a doubtful person, can not be attributed to a lack of knowledge of a
more complete specification of the real state of the person, because a more
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complete specification simply does not exist. The probabilities about the
state in which the other persons with a fixed opinion will end up, can indeed
be attributed to a lack of knowledge of a more complete specification of the
real state of the person. As we will point out in the next paragraph, the
creation-discovery picture gives a very natural explanation for the existence
of quantum probabilities. Quantum probabilities are attributed to the lack
of knowledge concerning the measurement process and not to the lack of
knowledge on the state of the system.

5 The quantum machine

We’ll go more into detail to justify our creation-discovery picture for the
quantum case. The way to do this is to talk about what we call the quantum
machine4. This machine provides a model that is applicable to a spin-1

2
quantum entity. The ‘lack of knowledge’ on the measurement process will
be presented by the parameter λ ∈ [0, 1]. The entity in Fig. 1 is a point
particle that moves on the surface of a sphere with center 0 and radius 1.
If the point has coordinates v, we denote the state corresponding to this
point as pv. A measurement eu on the entity in a state pv is defined in the
following way: Consider a straight line segment with one of its endpoints
in the point u of the sphere, and the other one in the antipodal point −u.
We’ll denote this segment by [−u, u]. We project v orthogonally on [−u, u]
and obtain the point v′. This point defines two segments [−u, v′] and [v′, u]
(see Fig.1).

β

Figure 1: Illustration of a measurement eu on our model for a spin-1
2 entity

when the initial state is pv.

4A variant of this model has first been introduced in [15, 16]. A similar modelization
is also applied in [12].
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Consider now a random variable λ defined on the segment [−u, u], and sup-
pose that the relative frequency of appearance of the possible λ is uniformly
distributed on [−u, u]. If λ ∈ [−u, v′], the point corresponding to the state
of the entity moves to u along [v′, u] and we obtain a state pu. If λ ∈ ]v′, u],
the point moves to −u along [v′,−u] and we obtain p−u. As a consequence,
there are two possible outcome states for this measurement eu: pu and p−u.
From a more mechanical point of view, the segment [−u, u] can be seen as a
uniform ‘elastic’, that can break in every one of its points in [−u, u] with the
same probability. Before we put the machine on, there is no way to find out
in which point the elastic will break. In the case we push the start-button
of the quantum machine, we get the following image: the point particle
falls from its original location on the elastic such that its ‘falling-direction’
is orthogonal to the elastic, and sticks to it. Then the elastic breaks and
the particle is torn to one of the two original endpoints of the elastic. If
we decide to perform a measurement in the u direction when we start with
a particle located in a point v on the unit sphere, it is easy to calculate
probabilities for a transition of the particle to u or −u:

P [v → u] =
1 + cosβ

2
= cos2β

2
= 1− P [v → −u]

where β is the angle between the vectors u and v. These probabilities are
the same as one obtains in a Stern-Gerlach measurement on spin-1

2 quantum
entities, i.e., this model system generates quantum probabilities. For more
details on this model system we refer to [15, 16, 18, 21, 22, 25, 29, 30,
32]. A similar model for a quantum entity described in a three dimensional
Hilbert space can be found in [28]. At every moment it is possible to look at
what happens within this machine. A classical machine will be one where
we install a rope which has the ability only to break in one point, such
that we get classical probabilities which are in principle for a well defined
initial location of the point particle only 1 or 0 (we omit the neglectable
situation of the point-particle falling on the breaking point, since this is an
event with a so called zero measure). Given the quantum machine, we are
now able to visualize an emergence of the quantum probabilities. As we
mentioned before, the probability appears due to a lack of knowledge about
the measurement process. In our quantum machine this lack of knowledge
is exactly referring to the point where the elastic breaks. We don’t have
any means to find out where the elastic will break when we set our quantum
machine in action. The quantum probabilities might be looked at in this way.
We mean that our quantum probabilities are calculated in a way in which we
take the probability over different classical machines, put on action. Each of
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the different classical machines considered has a rope of the same length as
the big quantum machine’s elastic, but now the rope is only breakable in one
point. All these classical machines differ in the sense that their ropes will
break in another point if set in action. We need to consider as many classical
machines as the quantum-elastic has breaking points. Now stated shortly, a
quantum machine in action is the same as one of all the considered classical
machines in action. The only point is that we don’t know which classical
machine with its specific breaking point-rope will actually be put into action.
This special classical machine is our hidden measurement. Although this
machine may be hidden, it influences the result of the measurement in such
a way that it is responsible for the creative aspect.
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