Dimitri De Bunder

Vrije Universiteit Brussel

Promotor: Tom van Vlaanderen

Voorzitter van de examencommissie:

Prof. Bart Vrrijen

Vrije Universiteit Brussel

Prof. Yvan Vande Heyden

Vrije Universiteit Brussel

Prof. Georges Vanghelin

Vrije Universiteit Brussel

Prof. Paul Card

Univeristy of British Columbia, UK

Prof. Peter De Buyze

Université libre de Bruxelles, Belgium

Prof. John Bruno

Ohio State University, USA

Leden van de examencommissie

Dr. Siew Yeow Chan

Melbourne, Australia

Howard Florey Institute

Neuropediatrics Group

Prof. Anthony L. Abbott

Dr. Lisa Smolders

Prof. Yvette Michotte

Promotoren

Promotion
Title: The Role of IAPP in Beta Cell Secretory Function

IAPP (Islet Amyloid Polypeptide) is a 37-residue peptide that is cosecreted with insulin by the beta cells of the pancreatic islets. It plays a crucial role in the normal functioning of the beta cells and has been implicated in the pathogenesis of type 2 diabetes. Several studies have shown that the overexpression of IAPP can lead to beta cell dysfunction and apoptosis, which may contribute to the development of diabetes.

In this study, we investigated the effect of IAPP on beta cell function and secretory capacity. We used a human beta cell line (MIN6) and treated it with IAPP at different concentrations. Our results showed that IAPP had a dose-dependent effect on beta cell function, with higher concentrations leading to increased cell death and decreased insulin secretion.

We also performed Western blot analysis of proteins involved in the secretory pathway, and found that IAPP treatment caused a significant decrease in the expression of several key proteins involved in insulin processing and secretion. These findings suggest that IAPP may have a direct impact on the beta cell secretory apparatus, leading to impaired insulin release.

In conclusion, our study highlights the potential role of IAPP in modulating beta cell function and provides new insights into the mechanism of action of this peptide. Further research is needed to fully understand the role of IAPP in diabetes pathogenesis.