The investigation on the structure of the unit group $U(O)$ of an order $O$ in a finite-dimensional rational algebra $A$ is a question of fundamental interest. We concentrate on the unit group of a group ring $OG$ of a finite group $G$ over an order $O$ in a number field. Since the work of Higman in 1940, the unit group of $OG$ has received tremendous attention. The most natural case is that of the integral group ring, i.e. $O = \mathbb{Z}$. Due to a celebrated result of Borel and Harish-Chandra it is a finitely presented group. One important question in the field of units in integral group rings is to obtain such a concrete finite presentation of $U(\mathbb{Z}G)$. Up to commensurability, the problem reduces to give a presentation for an order in every Wedderburn-Artin component of $\mathbb{Q}G$. By the congruence theorems, this is possible except if the component is of so-called exceptional type. The aim of this thesis is to handle some of these exceptional components. This is done by considering discontinuous actions on an adequate metric space. In a first instance the actions are on hyperbolic 2- and 3-spaces, where Poincaré’s Polyhedron Theorem is of use. Then a first initiative is taken to extend this result to direct products of several copies of hyperbolic spaces in order to treat more exceptional components.