Characterising substructures of finite projective spaces

by

Sara Rottey, Vrije Universiteit Brussel, Universiteit Gent

Thesis supervisors: Prof. Dr. Philippe Cara, Prof. Dr. Leo Storme and Dr. Geertrui Van de Voorde

Abstract.
In this thesis, we study several substructures in finite geometry, that is, structures contained in the Desarguesian projective space $\text{PG}(n, q)$ over the finite field \mathbb{F}_q.
First, we investigate pseudo-caps and weak eggs. These are the higher dimensional equivalent of caps and ovoids. We provide conditions on element induced spreads that ensure these structures are contained in a Desarguesian spread. Next, focussing on the Desarguesian spread itself, we obtain a geometric characterisation in terms of the normal elements of the spread.
Secondly, we consider linear representations $T^*_{n-1}(\mathcal{K})$, which are point-line incidence structures embedded in $\text{PG}(n, q)$ and completely defined by a point set \mathcal{K} at infinity. If the set \mathcal{K} contains a frame, the full automorphism group of this structure is found. Moreover, using the corresponding incidence graph, we construct new infinite families of semisymmetric graphs.
Lastly, we consider substructures in the Andrè/Bruck-Bose representation of $\text{PG}(2, q^n)$ in $\text{PG}(2n, q)$. We investigate the representation of \mathbb{F}_{q^k}-sublines and \mathbb{F}_{q^k}-subplanes of $\text{PG}(2, q^n)$ and obtain a characterisation of the ovoidal Buekenhout-Metz unital of $\text{PG}(2, q^2)$ in terms of its Baer secants.